If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+5x=00
a = 5; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·5·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*5}=\frac{-10}{10} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*5}=\frac{0}{10} =0 $
| 12x-95=-277 | | -3+7k=60 | | 2x-6x=-20-4 | | 9x=-36x | | -6+7k=60 | | x/22+15=19 | | 8/72=x/36 | | -13x-119=-366 | | x-x-2/2=1-x-3/2 | | 5x/4+9/3=8x/6-2 | | X^2-80x-75000=0 | | 3x=198/7 | | 9p+10=73 | | 5(3x-1)-2(4x+2)=40 | | 1/2x–1.0675=3x–4.145 | | 8x+13=x-6 | | 2+5x=2x+5 | | 1/2x–1.0675=3x–4.145. | | 9x=56x | | x+157=180 | | 22+3x=64 | | 7u^2+2u-2=0 | | x+6(3-3x)=52 | | 2x+25=117 | | 4(n+5)=4n+20 | | -96=-2(5r+8) | | 115+35+3x=180 | | 4(n+5)=20-5n | | -6(-22x-32)=45(23+4x) | | 7x+7(-2x+41)=328 | | 4(n+5)=4n-20 | | 7=8c+9 |